In 1774, Joseph Priestley, British Presbyterian minister and chemist, identified a gas which he called “dephlogisticated air” – later known as oxygen. Priestley found that mercury heated in air became coated with “red rust of mercury,” which, when heated separately, was converted back to mercury with “air” given off. Studying this “air” given off, he observed that candles burned very brightly in it. Also, a mouse in a sealed vessel with it could breathe it much longer than ordinary air. A strong believer in the phlogiston theory, Priestley considered it to be “air from which the phlogiston had been removed.” Further experiments convinced him that ordinary air is one fifth dephlogisticated air, the rest considered by him to be phlogiston.
Joseph Priestley, by Charles Turner [Public domain], via Wikimedia Commons |
However, oxygen was in fact first discovered earlier, by Swedish pharmacist Carl Wilhelm Scheele. He had produced oxygen gas by heating mercuric oxide and various nitrates in 1771–2. Scheele called the gas “fire air” because it was the only known supporter of combustion, and wrote an account of this discovery in a manuscript he titled Treatise on Air and Fire, which he sent to his publisher in 1775. That document was published in 1777.
Because Priestly published his findings first, he is usually given priority in the discovery.
The French chemist Antoine Laurent Lavoisier later claimed to have discovered the new substance independently. Priestley visited Lavoisier in October 1774 and told him about his experiment and how he liberated the new gas. Scheele also posted a letter to Lavoisier on September 30, 1774 that described his discovery of the previously unknown substance, but Lavoisier never acknowledged receiving it (a copy of the letter was found in Scheele’s belongings after his death). Long before this, one of the first known experiments on the relationship between combustion and air was conducted by the 2nd century BCE Greek writer on mechanics, Philo of Byzantium. In his work Pneumatica, Philo observed that inverting a vessel over a burning candle and surrounding the vessel’s neck with water resulted in some water rising into the neck. Philo incorrectly surmised that parts of the air in the vessel were converted into the classical element fire and thus were able to escape through pores in the glass. Many centuries later Leonardo da Vinci built on Philo’s work by observing that a portion of air is consumed during combustion and respiration.
In the late 17th century, Robert Boyle proved that air is necessary for combustion. English chemist John Mayow (1641–1679) refined this work by showing that fire requires only a part of air that he called spiritus nitroaereus. In one experiment, he found that placing either a mouse or a lit candle in a closed container over water caused the water to rise and replace one-fourteenth of the air’s volume before extinguishing the subjects. From this he surmised that nitroaereus is consumed in both respiration and combustion.
Mayow observed that antimony increased in weight when heated, and inferred that the nitroaereus must have combined with it. He also thought that the lungs separate nitroaereus from air and pass it into the blood and that animal heat and muscle movement result from the reaction of nitroaereus with certain substances in the body. Accounts of these and other experiments and ideas were published in 1668 in his work Tractatus duo in the tract “De respiratione”.
Robert Hooke, Ole Borch, Mikhail Lomonosov, and Pierre Bayen all produced oxygen in experiments in the 17th and the 18th century but none of them recognized it as a chemical element. This may have been in part due to the prevalence of the philosophy of combustion and corrosion called the phlogiston theory, which was then the favored explanation of those processes.
Established in 1667 by the German alchemist J. J. Becher, and modified by the chemist Georg Ernst Stahl by 1731, phlogiston theory stated that all combustible materials were made of two parts. One part, called phlogiston, was given off when the substance containing it was burned, while the dephlogisticated part was thought to be its true form, or calx.
Highly combustible materials that leave little residue, such as wood or coal, were thought to be made mostly of phlogiston; non-combustible substances that corrode, such as iron, contained very little. Air did not play a role in phlogiston theory, nor were any initial quantitative experiments conducted to test the idea; instead, it was based on observations of what happens when something burns, that most common objects appear to become lighter and seem to lose something in the process. The fact that a substance like wood gains overall weight in burning was hidden by the buoyancy of the gaseous combustion products.
This theory, while it was on the right track, was unfortunately set up backwards. Rather than combustion or corrosion occurring as a result of the decomposition of phlogiston compounds into their base elements with the phlogiston being lost to the air, it is in fact the result of oxygen from the air combining with the base elements to produce oxides. Indeed, one of the first clues that the phlogiston theory was incorrect was that metals gain weight in rusting (when they were supposedly losing phlogiston).
For more information visit:-